Automated White Blood Cell Disease Recognition Using Lightweight Deep Learning
نویسندگان
چکیده
White blood cells (WBC) are immune system cells, which is why they also known as cells. They protect the human body from a variety of dangerous diseases and outside invaders. The majority WBCs come red bone marrow, although some other important organs in body. Because manual diagnosis disorders difficult, it necessary to design computerized technique. Researchers have introduced various automated strategies recent years, but still face several obstacles, such imbalanced datasets, incorrect feature selection, deep model selection. We proposed an learning approach for classifying white this paper. data augmentation initially used increase size dataset. Then, Darknet-53 pre-trained fine-tuned according nature chosen On model, transfer used, features engineering done on global average pooling layer. retrieved characteristics subsequently improved with specified number iterations using hybrid reformed binary grey wolf optimization Following that, machine classifiers classify selected best final classification. experiment was carried out dataset increased imaging resulted accuracy over 99%.
منابع مشابه
Named Entity Recognition in Persian Text using Deep Learning
Named entities recognition is a fundamental task in the field of natural language processing. It is also known as a subset of information extraction. The process of recognizing named entities aims at finding proper nouns in the text and classifying them into predetermined classes such as names of people, organizations, and places. In this paper, we propose a named entity recognizer which benefi...
متن کاملTowards Automated Tuberculosis detection using Deep Learning
Tuberculosis(TB) in India is the world’s largest TB epidemic [1]. TB leads to 480,000 deaths every year [2]. Between the years 2006 and 2014, Indian economy lost US$340 Billion due to TB. This combined with the emergence of drug resistant bacteria in India makes the problem worse [3]. The government of India has hence come up with a new strategy which requires a high-sensitivity microscopy base...
متن کاملTowards Automated ICD Coding Using Deep Learning
International Classification of Diseases(ICD) is an authoritative health care classification system of different diseases and conditions for clinical and management purposes. Considering the complicated and dedicated process to assign correct codes to each patient admission based on overall diagnosis, we propose a hierarchical deep learning model with attention mechanism which can automatically...
متن کاملEmotion Recognition Using Multimodal Deep Learning
To enhance the performance of affective models and reduce the cost of acquiring physiological signals for real-world applications, we adopt multimodal deep learning approach to construct affective models with SEED and DEAP datasets to recognize different kinds of emotions. We demonstrate that high level representation features extracted by the Bimodal Deep AutoEncoder (BDAE) are effective for e...
متن کاملSpoken Emotion Recognition Using Deep Learning
Spoken emotion recognition is a multidisciplinary research area that has received increasing attention over the last few years. In this paper, restricted Boltzmann machines and deep belief networks are used to classify emotions in speech. The motivation lies in the recent success reported using these alternative techniques in speech processing and speech recognition. This classifier is compared...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computer systems science and engineering
سال: 2023
ISSN: ['0267-6192']
DOI: https://doi.org/10.32604/csse.2023.030727